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Abstract
The identification of phase transition points, βc, with the percolation thresholds
of suitably defined clusters of spins has proved immensely fruitful in many
areas of statistical mechanics. Some time ago, Kertesz suggested that such
percolation thresholds for models defined in field might also have measurable
physical consequences for regions of the phase diagram below βc, giving rise
to a ‘Kertesz line’ running between βc and the bond percolation threshold, βp,
in the H, β plane. Although no thermodynamic singularities were associated
with this line, it could still be divined by looking for a change in the behaviour
of high-field series for quantities such as the free energy or magnetization.
Adler and Stauffer did precisely this for the regular square lattice and simple
cubic lattice Ising models and did, indeed, find evidence for such a change
in high-field series around βp. Since there is a general dearth of high-field
series, there has been no other work along these lines. In this paper, we use the
solution of the Ising model in field on planar random graphs by Boulatov and
Kazakov to carry out a similar exercise for the Ising model on random graphs
(i.e. coupled to 2D quantum gravity). We generate a high-field series for the
Ising model on �4 random graphs and examine its behaviour for evidence of a
Kertesz line.

PACS numbers: 05.50.+q, 02.10.Ab, 05.70.Fh, 64.60.Ak

1. Introduction

The question of how to give a geometrical, percolation-like interpretation of the thermal
transition in the Ising model was finally resolved by Coniglio and Klein [1], although the idea
is already implicit in the work of Fortuin and Kasteleyn [2] on a correlated bond-percolation
model for the q-state Potts model and in many ways is a realization of Fisher’s earlier ideas
on critical droplets [3]. The key insight was to construct spin clusters in which like spins were
joined with probability p = 1 − exp(−2β), where β = 1/kBT is the inverse temperature.
These then percolated at the correct critical temperature Tc and gave the correct thermal
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Figure 1. A schematic diagram of the Kertesz line in the u = exp(−4β), y = exp(−2H) plane.
The Kertesz line is shown in bold and the critical uc and percolation up points are marked.

exponents. The definition of such stochastic clusters has led directly to the development
of cluster algorithms and similar geometrical representations in many statistical mechanical
models.

Since Coniglio–Klein clusters are intended to access the thermal phase transition of the
Ising model, they are not usually formulated in the presence of an external field, because in
this case the free energy becomes analytic and the thermal transition is washed out. However,
it is clear that one can still build such clusters when the external field is non-zero. For a given
external field value H these clusters will percolate at some temperature TK(H), and varying
H then traces out the so-called Kertesz line in the u, y plane as shown in figure 1, where
u = exp(−4β) and y = exp(−2H). For y = 1 we have the usual thermal Ising transition at
uc, whereas for y → 0 we recover standard bond percolation for the lattice in question at up.

Although a percolative transition exists across the Kertesz line, no singularities are
expected in the thermodynamic quantities related to the Ising model, since these can only
appear for H = 0. Nonetheless, something physical is going on since the percolative transition
is signalled by ‘wrong-sign’, say down, spin clusters losing their surface tension. This begs
the question of whether the Kertesz line leaves any discernible signal in measurable quantities.
This issue was discussed by Kertesz himself [4], and later investigated numerically by Adler
and Stauffer [5]. If one considers the number of down spin clusters ns(u,H) of size s in a
non-zero up field H, then standard nucleation theory leads to

log ns(u,H) = s log y − sσ � (1)

below the Kertesz line. The first term is the bulk contribution and the second term arises from
the surface tension � of the droplets, with σ = 1 − 1/d , and is a direct extrapolation of the
H = 0 (y = 1) result.

On general grounds, one would expect that the spin–spin interaction, which is the source
of the surface tension, should be sufficiently weak at high temperatures for the surface term in
equation (1) to vanish. The droplet energy would then be

log ns(u,H) = s log y + s log λ(u,H) (2)
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where λ < 1. The line in the u,H plane along which the surface tension vanishes and the
clusters percolate is precisely the Kertesz line. Using equations (1) and (2) we see that cluster
numbers will decay as

ns = exp(−�s1−1/d )ys (3)

for temperatures below the Kertesz line whereas they will decay as ysλs above the line.
We should emphasize that the expressions for the cluster numbers are blind to the

underlying lattices since they are derived from only the general properties of the droplet
picture and the physical input of a vanishing surface tension for sufficiently high temperature.
They will thus apply to both the square lattice and the planar random graphs we discuss in
the sequel. Indeed, it is clear that in simulations cluster algorithms derived from the droplet
picture such as the Wolff [6] or Swendsen–Wang [7] algorithm are as effective in reducing
critical slowing down for models on random graphs as they are on regular lattices [8].

In this paper, we look at series expansions in an attempt to discern any physical effects
of the Kertesz line, since our motivation was to employ exactly the same methods of analysis
used by Adler and Stauffer [5] in investigating the Kertesz line in the Ising model on regular
lattices. This affords a direct comparison of the results. Noting that physical quantities such
as the magnetization can be expressed in terms of ns ,

M = 1 − 2
∑

s

sns(u,H) (4)

we can develop M in terms of a large-field expansion in y using equations (1) and (2). Since
equation (2) shows that y is effectively replaced by yλ above the Kertesz line, one might
expect the series for M and other observables to converge up to some y > 1 (since λ < 1) in
this region. The tactic we employ is thus to estimate the radius of convergence of such series
as u is varied to see if it shows evidence of changing, which is precisely that used by Adler and
Stauffer [5] in their investigations of the Kertesz line on regular two- and three-dimensional
lattices, as we now discuss in more detail.

2. Square lattice reprise

In order to investigate the possible consequences of a Kertesz line, Adler and Stauffer analysed
the radius of convergence of some long-standing high-field series for the free energy and the
magnetization of the Ising model [9] using Padé approximants. We briefly review their results
here for comparison with the random graphs in the next section. Taking the series for the free
energy F or its derivative, we have

F =
∑

s

Ls(u)ys dF

dy
=

∑
s

sLs(u)ys−1 (5)

where the so-called high-field polynomials Ls(u) were calculated up to order 15 for the square
lattice in [9].

The series for F, dF
dy

and the magnetization M were subjected to a standard unbiased
Dlog–Padé analysis in order to estimate the radius of convergence. If we assume a singularity
of the form F ∼ (y − yc)

−λ, then
d

dy
log F = − λ

y − yc

(6)

and an [L/M] Padé approximant to d
dy

log F
(
or dF

dy
, or M

)
,

[L/M] = PL(y)

QM(y)
= p0 + p1y + · · · + pLyL

q0 + q1y + · · · + qMyM
(7)
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Figure 2. The estimated radius of convergence for the high-field series of dF
dy

on the square lattice
plotted against u. The different symbols represent the different approximants used. Note that the
jump is seen only in the [7/7] (star) and [6/7] (diamond) approximants, whereas the [6/6] (cross)
and [5/5] (triangle) approximants give complex roots for some u ∼ up .

would be expected to show the pole at yc as a zero of QM(y). For the square lattice for instance
uc = 3 − 2

√
2 = 0.171 57 . . . and up = 1/4, so we would expect to see a change in yc at, or

around, up.
We show the results of such an analysis on dF

dy
for the estimated radius of convergence as

a function of u in figure 2. We can see that there is evidence for a change in the behaviour of
yc around u = 1/4. In the plotted data, jumps are present in the [7/7] and [6/7] approximants
at up, and the [5/5] and [6/6] approximants cease to give a real pole term for some u ∼ up.
In figure 2, we have plotted the [5/5] and [6/6] approximants up to the largest real pole
value obtained. As shown in [5], the behaviour for other approximants and for F and M is
similar—in all cases there is evidence of an increase in the estimated yc around u = 1/4 or
the approximant’s estimates of yc become complex.

One detail that should be noted is that both here and in the random graph case investigated
below, there is a tendency for the approximants to throw up spurious cancelling pole/zero pairs,
so one must be careful to look at both the numerator and the denominator of the approximant
to make sure that one is determining the ‘real’ pole term. This also introduces a certain degree
of subjectivity into proceedings since the poles and zeros are only equal to within numerical
accuracy. All the series calculations were done with exact arithmetic, with fixed, but large,
precision only being resorted to in the final stage of obtaining the roots of the Padé numerators
and denominators.

An analysis of the series for the simple cubic lattice Ising model, available up to order 13,
in [5] also gave very similar results, with signs of an increase in the estimated radius of
convergence, or instability in the approximants, in the vicinity of the percolation temperature
for the lattice. The usual caveats, of course, apply to any such discussion, since the series
involved are quite short and of considerable vintage, but the cumulative evidence of the various
approximants and the results on different lattices was felt in [5] to lend support to the Kertesz
scenario.
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3. Fat random graphs

Given the evidence for a Kertesz line in the Ising model on the square and cubic lattices, it
is tempting to look elsewhere for the phenomenon. In order to carry out such an analysis for
other models (or lattices) we require a high-field expansion, which is, in general, rather hard
to come by. In what follows, we discuss obtaining such an expansion for an exact solution
to the Ising model in field on planar (fat) random graphs which was derived by Boulatov and
Kazakov [10, 11]. They considered the partition function for the Ising model on a single
planar graph with n vertices

Zsingle(G
n, β,H) =

∑
{σ }

exp


β

∑
〈i,j〉

Gn
ijσiσj + H

∑
i

σi


 (8)

then summed it over some suitable class {Gn} of n vertex graphs (e.g. �3 or �4 random graphs)
resulting in

Zn =
∑
{Gn}

Zsingle(G
n, β,H) (9)

before finally forming the grand-canonical sum over differently sized graphs

Z =
∞∑

n=1

( −4gc

(1 − c2)2

)n

Zn (10)

where c = u1/2 = exp(−2β). This last expression could be calculated exactly as a matrix
integral over N × N Hermitian matrices,

Z = − log
∫

Dφ1Dφ2 exp

(
−Tr

[
1

2

(
φ2

1 + φ2
2

) − cφ1φ2 − g

4

(
eH φ4

1 + e−H φ4
2

)])
(11)

where the N → ∞ limit is to be taken to pick out the planar diagrams and we have used the
potential appropriate for �4 (4-regular) random graphs.

When the integral is carried out, the solution is given by

Z = 1

2
log

z

g
− 1

g

∫ z

0

dt

t
g(t) +

1

2g2

∫ z

0

dt

t
g(t)2 (12)

where the function g(z) is

g(z) = 3c2z3 + z

[
1

(1 − 3z)2
− c2 +

3z(y1/2 + y−1/2 − 2)

(1 − 9z2)2

]
. (13)

As we can see, this is a solution in field for the Ising model on random graphs, since g(z) has
been obtained in full generality for y = exp(−2H) �= 1.

In order to generate a high-field series from equation (12), we revert the series for g(z)

to get a series z(g). This can then be used in equation (12) in order to obtain an expansion for
the partition function in powers on g (i.e. in the number of vertices). As we noted in [12], it
is only necessary to consider the first of the terms in Z = Z1 + Z2 + Z3 with

Z1 = 1

2
log

z

g

Z2 = − 1

g

∫ z

0

dt

t
g(t)

Z3 = 1

2g2

∫ z

0

dt

t
g(t)2

(14)

since Zk = ∑
n an

k An(u)gn where An(u) is identical for all the Zk .
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This can be traced back to the generic expression for the partition function of any Hermitian
matrix model, which is of the form

Z =
∫ 1

0
dξ(1 − ξ) log(f (ξ)) + · · · (15)

where in the case of the Ising model on �4 graphs, f is the solution to

gξ =
(

2gf

c

)



1(
1 − 6gf

c

)2 − c2 +
6gf

c

(y1/2 + y−1/2 − 2)(
1 − 9

(
2gf

c

)2
)2


 + 3c2

(
2gf

c

)3

. (16)

The expression in equation (12) is obtained from this by defining z = 2gf/c and integrating
by parts. One finds that the coefficient of gn in Z1 should be (n + 1)(n + 2) times the full value
obtained from expanding Z1 + Z2 + Z3 from these considerations, which can be confirmed by
comparison with the results presented for low orders in [13, 14]. For example, the coefficient
of g̃2 in [13] is found to be3

1
8c−2y−1[9 + (16c2 + 2c4)y + 9y2] (17)

which is

12Z1 = 12
(

3
2

)
c−2y−1[9 + (16c2 + 2c4)y + 9y2] (18)

as expected. The high-field polynomials come from an expansion of the free energy F rather
than the partition function Z, so there is one further step.

We choose to consider dF
dy

for calculational convenience rather than directly taking the
logarithm to obtain F, since the operation of taking a logarithm proved to be rather memory
intensive. Since the free energy per site is defined as (absorbing a factor of −β)

F = lim
n→∞

1

n
log Zn (19)

we can approximate this by

d

dy
F ∼ 1

nZn

dZn

dy
(20)

for some sufficiently large n (in our case we take n = 32). The behaviour observed for dF
dy

in
[5] was in any case similar to that of F and M.

4. The percolation threshold on Φ4 graphs

Kazakov has already calculated the threshold on �3 graphs, so it is a simple matter to repeat
the calculation to obtain the result he stated (pcr = 2/3), but did not derive, for �4 graphs
in [10]. Here, we have chosen to work with �4 graphs rather than �3 graphs because the
expression for g(z) turns out to be rather more inconvenient with �3 graphs and reverting this
in the manner of the previous section to get Z1 is much more cumbersome than it is for �4

graphs.
The idea is to consider the percolation problem as the q → 1 limit of a q-state Potts model,

where the Potts partition function is

ZPotts =
∑
{σ }

exp(−β̃H) (21)

3 Here g = (1−c2)2

c
g̃.
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with H = −∑
〈ij〉

(
δσi,σj

− 1
)
, and the spins σi take on q values. This Potts partition function,

just as in the Ising case, can be expressed as the matrix integral over N × N Hermitian
matrices φi ,

F = 1

N2
log

∫ ∏
i

Dφi exp(−S) (22)

where

S = Tr


1

2

q∑
i=1

φ2
i − c̃

∑
i<j

φiφj − g

4

q∑
i=1

φ4
i


 (23)

and we have used c̃ = 1/(exp(β̃)+q −2) for the Potts coupling and temperature to distinguish
them from the Ising case. The apparent factor of two difference between the q = 2 version
of c̃ and the Ising coupling in the previous section, and the consequent factor of two in the
temperature scales are accounted for by the use of a σiσj interaction in the Ising model and a
δσi,σj

interaction in the Potts model.
This in turn may be recast into a matrix external field integral by introducing a further

matrix integration in the dummy N × N Hermitian matrix X,

F = 1

N2
log

∫
DX exp

(
−Tr

[
1

2
X2

]) {∫
Dφ exp

(
Tr

[
hXφ − 1 + h2

2
φ2 +

g

4
φ4

])}q

(24)

where h2 = c̃. In the limit q → 1, the percolative probability p = 1 − exp(−β̃) is related
to these parameters by h2 = c̃ = 1/p − 1. The mean number of percolative clusters per unit
volume f (p) may be calculated from the quantity ζ(g, p), which is given in terms of the Potts
free energy by

lim
q→1

∂F

∂q
= ζ(g, p). (25)

Evaluating ζ(g, p) in the saddle-point approximation gives

ζ(g, p) = 1

2N

N∑
i=1

(x∗
i )

2 − 2

N2
log �(x∗) − F 0(g) (26)

where the x∗
i are the saddle point values of the X eigenvalues and F 0(g) is the standard one-

matrix model free energy. As in the �3 model, the 2
N 2 log �(x∗) term is what counts for the

percolative critical behaviour, and this gives

2

N2
log �(x∗) =

∫ a

−a

∫ a

−a

du dv ρ(u)ρ(v)

[
log

∣∣∣∣
(

1

p
− 1

2

)
− 1

2
(u2 + uv + v2)

∣∣∣∣ + log |u − v|
]

− 1

2
log

(
1

p
− 1

)
(27)

where ρ is the eigenvalue density for the one-matrix �4 model which has support on [−a, a].
The �4 model will be critical when the argument of the first logarithm is zero within the
region of integration, which first occurs when u2 = uv = v2 = a2 = 2/3, so pcr = 2/3 as
announced in [10]. Since pcr = 2/3 = 1 − exp(−β̃p), allowing for the factor of 2 between
Ising and Potts conventions gives exp(−β̃p) = exp(−2βp) = 1/3, so on the �4 graphs
up = exp(−4βp) = 1/9 is to be compared with the 1/4 of the regular square lattice.
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Figure 3. The estimated radius of convergence for the high-field series of dF
dy

on �4 graphs plotted
against u. The symbols are the estimates obtained from [13/13] (diamond), [14/14] (circle) and
[15/15] (triangle) Padé approximants.

5. Padé approximants for Φ4 graphs

The procedure is identical to the square lattice investigation: here we take Z32, calculate

d

dy
F ∼ 1

32Z32

dZ32

dy
(28)

as our estimate of d
dy

F and then take unbiased Dlog–Padé approximants to this expression in
order to determine yc. Again, exact arithmetic is used until the final stage of extracting the
zeros and poles of the Padé approximant is reached.

Since our starting series is rather longer than the square lattice case, we calculate up to
the [15/15] approximant. In figure 3 we show the [13/13], [14/14] and [15/15] approximants
plotted against u. The near-diagonal approximants and lower approximants on the �4 graphs
which we also calculated all give very similar estimates for yc and we have not shown them
for clarity. The �4 graph results thus appear to be rather stable since changing either the
overall order of the approximants or their nature (diagonal or off-diagonal) has little effect on
the estimated yc over the whole range of u investigated.

It is immediately obvious from figure 3 that there is evidence for a change in the behaviour
of the high-field series for u ∼ up. There are none of the jumps seen in some of the Padés
from the square lattice series, as can be seen by comparison with the [7/7] square lattice
approximant in figure 2. However, various square lattice Padés show no evidence of any
change until they eventually throw up only complex poles for some u � up = 0.25, of which
the [6/6] Padé, which is also plotted in figure 2, is representative.

For the random graph series, on the other hand, all of the calculated Padés show an
increase starting around u ∼ up, eventually leading to much larger estimates for yc in all the
approximants for sufficiently large u, before they too start returning only complex poles. The
behaviour of the series for F, which we do not show here, is rather similar, with the estimates
of yc showing a steady increase starting in the region u ∼ up.
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Interestingly, the �4 graph Padés show little sign of overestimating yc for u < uc, which
is clearly the case for the square lattice Padés in figure 2, though they do return estimates that
are slightly larger than 1. It was hypothesized in [5] that the square lattice overestimate might
be the consequence of the presence of a pseudo-spinodal line, which could be weaker in the
random graph case.

In summary, although there is no sign of the dramatic jumps seen in some of the regular
lattice Padés, there is coherent evidence from all the �4 graph Padés of a steady increase in
yc(u), beginning at u ∼ up.

6. Conclusions

We reviewed the existing results for the existence of the Kertesz line for the Ising model on
the square lattice, which lend support to the suggestion that a change in the behaviour of the
high-field series should be visible around the percolation threshold. We then made use of
the Boulatov and Kazakov solution of the Ising model on planar random graphs to construct
a high-field series for planar �4 graphs and subjected this to the same Dlog–Padé analysis
carried out on the much shorter square lattice series. We found that there are clear signs in this
series too for a change in behaviour, since the estimated values of the radius of convergence,
yc, increase as u = exp(−4β) is increased, as seen in figure 3. There are, however, no jumps in
the estimated yc at up, such as occur for some of the approximants to the square lattice series.
It is fair to say however, that all the plotted approximants (and those we have not plotted)
do begin to increase around, or just above, the calculated value of up for the �4 graphs,
namely 1/9.

On balance therefore, the analysis of the high-field series for the Ising model on planar
�4 random graphs also lends support to the existence of a Kertesz line. Since clusters of spins
behave in the same manner on ensembles of planar random graphs as they do on the square
lattice (as we have noted, the Wolff [6] or Swendsen–Wang [7] algorithms still do an excellent
job of reducing critical slowing down for Ising models on ensembles of random graphs), this
is reassuring. It would have been interesting, but beyond the scope of the resources available
to us, to extend the order of the �4 high-field series to see what effect this had on the estimates
of yc. It would also be an interesting exercise to extend the now vintage square lattice series
for further comparison, bearing in mind that the clearest signal for a jump in yc was only seen
in the highest available approximants. Alternative approaches to investigating the effects of
the Kertesz line by looking directly at the cluster percolation in non-zero field in Monte Carlo
simulations have found clear evidence for singularities in geometrical quantities decribing the
clusters, but the relation to the pseudocritical properties of thermal quantities, and hence their
influence on the physical behaviour, remains unclear [15].
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